Sept/Oct 2024Sept/Oct 2024
PAYMENTform_banner200PAYMENTform_banner200
RATES_banner200RATES_banner200
SIGNUP_banner200SIGNUP_banner200
equineSUBSCRIBE_200animationequineSUBSCRIBE_200animation
EC_advertisng_RS200x345EC_advertisng_RS200x345
paykwik al online sportwetten paykasa

Researchers Say New Test Can Detect Presence of Gene Doping in Equine Athletes

Filed under: Featured,Health & Training |     

Penn Vet

By: Hannah Kleckner Hall

Researchers at the University of Pennsylvania School of Veterinary Medicine (Penn Vet) have successfully developed a new test to systemically detect the local administration of illicit, gene doping therapies in equine athletes. The findings from the novel study, supported in part by the Pennsylvania Horse Breeders Association (PHBA) and the Pennsylvania State Horse Racing Commission, are a significant breakthrough in the collective fight to advance the welfare and integrity of sport for both horses and humans.

Unlike other small molecule pharmaceuticals, gene doping agents trigger cells to produce performance enhancing proteins. These proteins, which often are more elusive due to their virtually indistinguishable characteristics from naturally occurring proteins within the body, can make it more difficult to determine whether or not an animal or human has had gene therapy administered. Until now, that is.

Led by Mary Robinson, PhD, VMD, DACVCP, assistant professor of Veterinary Pharmacology and director of the Equine Pharmacology Laboratory at Penn Vet’s New Bolton Center, the team of Penn Vet researchers have created and validated a quantitative real-time polymerase chain reaction test – commonly known as a PCR test – that is able to detect the presence of a gene doping agent in plasma and synovial fluid after its intra-articular administration in horses.

“For the first time, we have demonstrated that a PCR test performed on a blood sample can detect the local administration of a gene therapy into the joint of a horse,” said Robinson. “While this test is currently limited in that it can only detect a specific gene therapy, it provides proof of concept that a gene therapy administered into the joint can be detected in a blood sample in a manner that is quick, convenient, and consistent with our long-term goal of deploying pre-race testing someday in the future,” she added.

Not only were the Penn Vet researchers able to detect the presence of this product in equine joint fluid after gene therapy was administered intra-articularly, they were also able to detect it in blood for up to 28 days.  This represents a significantly robust window of time that could be useful for pre-race as well as out of competition testing.

“The ability to detect the presence of these gene doping agents in blood after local administration to joints just magnifies the implications of this game-changing development,” said Joanne Haughan, Mag.med.vet, one of the lead investigators on the study. “The science is closing in on those who seek to use these advancements for wrongful means; the more we learn with each study, the harder it will be for individuals who seek to cheat the system using gene doping strategies.”

This ongoing body of research in gene doping is being performed concurrently with Penn Vet’s larger multi-tiered, multi-year project to expand upon New Bolton Center’s equine BioBank. Established in 2017 using internal funds from the Raymond Firestone Trust Research Grant and expanded in 2018 with support from the PHBA, the growing database collects and analyzes multiple types of samples, looking for a myriad of potential biomarkers in equine athletes. With the goal of someday creating “biological passports,” researchers believe these biomarkers could also be key in detecting gene doping as well as predicting injuries before they happen.

“As breeders, protecting the health, safety, and well-being of our horses is a deeply profound and personal priority for our membership,” said Brian Sanfratello, Executive Secretary of the PHBA. “These scientific discoveries get us one step closer to our dream of someday keeping equine sport completely clean. We are proud to support Dr. Robinson and her team of experts as they continue to incrementally drive us closer and closer to making that dream a reality.”

With the completion of a third study on the horizon, Penn Vet’s researchers seek to further expand and refine their testing methodology in order to create screening tests that would successfully identify multiple gene doping agents for even longer periods of time. “We still have a lot of work to do to better understand the nature of bio-markers and how to fully harness their capabilities, but the science for detecting gene doping is getting there and much more quickly than any of us could have anticipated when we started this research,” added Robinson. “Ideas that once may have seemed unattainable – like a hand-held, stall-side testing device – are now coming into sight as real and tangible possibilities. We just need continued support to help get us there.”

Dr. Mary Robinson is an assistant professor of veterinary pharmacology and director of the Equine Pharmacology Laboratory at the University of Pennsylvania School of Veterinary Medicine. Additional investigators on the study include Penn Vet’s Faculty and Staff including Dr. Joanne Haughan, Dr. Zibin Jiang, Dr. Darko Stefanovski, Dr. Kyla Ortved, and 4th year Penn Vet student Ms. Kaitlyn Moss.

This study is currently supported in part by the Pennsylvania Horse Breeders Association and the Pennsylvania State Horse Racing Commission, in addition to grants from the University of Pennsylvania McCabe Fund (Ortved) and New Bolton Center’s Raymond Firestone Trust Research Grant (Haughan and Robinson). Individuals or organizations who would like to support the program through a financial donation are encouraged to contact Margaret Leardi, Director of Development for New Bolton Center, at mleardi@vet.upenn.edu.

About Penn Vet

Ranked among the top ten veterinary schools worldwide, the University of Pennsylvania School of Veterinary Medicine (Penn Vet) is a global leader in veterinary education, research, and clinical care. Founded in 1884, Penn Vet is the first veterinary school developed in association with a medical school. The school is a proud member of the One Health initiative, linking human, animal, and environmental health.

Penn Vet serves a diverse population of animals at its two campuses, which include extensive diagnostic and research laboratories. Ryan Hospital in Philadelphia provides care for dogs, cats, and other domestic/companion animals, handling nearly 35,300 patient visits a year. New Bolton Center, Penn Vet’s large-animal hospital on nearly 700 acres in rural Kennett Square, PA, cares for horses and livestock/farm animals. The hospital handles nearly 5,300 patient visits a year, while the Field Service treats more than 38,000 patients at local farms. In addition, New Bolton Center’s campus includes a swine center, working dairy, and poultry unit that provide valuable research for the agriculture industry.

paykwik online sportwetten paykasa